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Evolution of Hopf configuration of spin field in the Heisenberg 
model 
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Abstract A computer-algebra method for the analysis of evolution equations is presented. 
Results are given for the Hopf configuration linear-in-time approximation and the first-order 
nonlinear approximation. A hypothesis of asymptotic behaviour of the Hopf configuration is 
formulated. A test case of the Schrildinger equation and the so-called nonlinear Schrildinger 
equation is also presented. 

1. Non-numerical approach to the evolution equation 

In many fields of physics we use differential equations to describe the evolution of the 
system under consideration. These evolution equations often take the following form: 

-=  af 6f 
at 

When operator d is nonlinear, which is often the case, they are not easy to solve analytically 
and are usually treated numerically. Numerical integration of evolution equations is a well- 
developed methodl, but it needs discretized space to work with. In most situations this is not 
a problem. Problems arise only when we are looking for solutions which are topologically 
non-trivial. Discretization of space leads to problems with defining topological properties 
of a field under consideration, since they are defined for continous fields and are not easily 
extendable to discrete ones. Furthermore, numerical integration, due to its discrete nature, 
may not preserve, topological charge during the evolution. Finally, numerical methods, in 
a multi-dimensional case, need substantial amounts of computing resources§, and are quite 
expensive in terms of computing time. 

In many cases, we only need a clue to help us find a solution to the equation. In this 
case it is not necessary, and not worth investing time in the numerical approach. 

Using the definition of a derivative, we may rewrite (1) in the approximate form 

= 6ft (2) 

h + d t  = ft + d t h f t .  (3) 

h + d t  - ft 
dt 

and then the form of the function f in the moment t + dt is described by the recursive 
formula 

The above equation may, in principle, be iterated for any given starting field configuration 
fo. Furthermore, field ft+& is homotopically equivalent to the field ft. 
t E-mail address: jochym@if.uj.edu.pl 
t For a summary of numerical methods see for instance [1,21. 
8 For example, one needs 128 megabytes of memory for a 2563 lattice. 
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Proof. By definition, loops f(u) and g(a) are. homotopical in xo if there exists, continous 
in 0 E [O, I], a function h(u, 0) such that 
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0) = f(u) (4) 
1) = g(0)  (5) 

h(a i ,  e) = x o .  (6) 

h(u. 0) = f,(u) +Bdt8f,(U) (7) 
a 

It is obvious that if both fr and ft+& satisfy the same boundary conditions, the function 

is our function for ft and fr+dt.  

’ Thus, we get analytical formulae for the field configuration for any given value of time. 
In this paper we will show a method of non-numerical analysis of the first-order in 

time nonlinear evolution equations, using the evolution equation of the spin field (8) as an 
example. We will also present results for a configuration with non-aivial Hopf index, in the 
limit of a small value of the time parameter. Another two examples of the use of the above 
method to the well known cases of the Schrodinger equation and the nonlinear Schrlidinger 
equation are given in appendix A. Finally we will formulate a qualitative hypothesis on the 
asymptotic behavior of the spin field in the limit of infinite time. 

2. Heisenberg ferromagnet with topological charge 

The non-singular configuration of the three-dimensional Heisenberg ferromagnet with 
topological charge has been discussed over the past two decades [3-6]. The Heisenberg 
model of a ferromagnet in the long-wave approximation is equivalent to the three- 
dimensional vector field with the length of vectors normalized to one. In other words 
it is a map, 

from three-dimensional Euclidian space to the two-dimensional sphere S2. The energy of 
this field is expressed by the formula 

s : R3 H sz (8) 

H = (Vs)’d3x. (9) 
723 s 

The field (8) has some associated topological properties, in particular we can classify all 
fields (8) using a Hopfindex as a class number [7,8]. The Hopf index for this field is 
defined as follows [9]: 

q = - 1 d3xA, J” 
RI 

where 

and A satisfies 
J” = EgYAa,AA 

The integral (IO) takes only integer values, and this property prevents any configuration 
from changing Hopf index by means of time evolution (as it is a continuous process). In 
[8] we have proved that this property is not sufficient to stabilize the configuration. This 
result leads to the natural question of how the configuration will evolve in time. This is 
considered in the next section. 
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3. Evolution of a Heisenberg ferromagnet 

The time evolution of a spin field (8) in a Heisenberg ferromagnet without damping and 
anisotropy is governed by the following equation [lo]: 

at 1 +ow* 

where w is a stereographic coordinate of vector s defined as 

sx + isy 
1 +s= 

o =  -, 

The coordinates of vector s are expressed in terms of variable o by 

Equation (13) is highly nonlinear, and all attempts to solve it have failed so far. 
Furthermore, we are interested in solutions with non-trivial Hopf index. This requirement 
rules out a numerical approach to the problem as topological properties of the field s may 
not be preserved by numerical integration of the evolution eqwtion. 

Using the definition of the time derivative (13) becomes 

which can be rewritten as a recursive formula for the field configuration at the moment 
t + At, 

Our idea was.to iterate the above formula, for a given starting configuration, keeping all 
parameters, as well as the form of the function, analytical. As the result is correct in the 
limit of small evolution time we can learn something on how a given configuration evolves. 
We can also extrapolate our result to some finite time and, if the results from numerous 
steps are in agreement, see how the configuration evolves in the finite-time regime. This is 
very easy in principle. The problem is in the complexity of the formulae involved in this 
kind of computation. Until recent years this approach was not practical, as the formulae 
involved may be very long and complicatedt. When, in the mid seventies, the first programs 
for symbolic calculations appeared, this kind of approach became possible. Only recently 
has progress in symbolic program development and in computer technology allowed us to 
actually use the above method as a practical tool. There are many pro,ms on the market 
(Mathematica, Macsyma and Maple to name a few) which can be used to perform this kind 
of calculation. 

An illustration of the method presented on the two examples is given in appendix A. In 
the first example we apply (3) to the time-dependent Schrodinger equation with a general, 
time-independent potential. The  second example concerns the nonlinear Schrodinger 
equation. 

j In one particular case the formula took some 9 5 ~ e  of memory. 
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4. Results for the Hop€ configuration 

The simplest known c0nfigurat.m with non-trivial Hopf index is given by a map 
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where complex numbers U ,  U represent the stereographical coordinates of a point in the R3 
space. Variables U = (I + i,4 and U = y ~+ is are related to the Cartesian coordinates on the 
R3 space by means of the stereographic projection 

In Cartesian coordinates on R' space, (18) becomes 

The first step of iteration (17) gives us the result 

2(y - ix) (1 - x z  - y2  - zz  - 2i(z + Af)) 
(1 - x 2  - y2 - zz - 2iz)2 

0 2  = 

which, incidentally, is quite simple. This is not the case with further steps. Even the second 
step is too long to quote here and the thud step exceeds the capacity of our computers. 
Furthermore, even for wg we have problems with calculating the energy density of the 
configuration. Nevertheless, we managed to fully calculate two iteration steps of (17). 

There is a problem with visualizing the properties of the field (8). We have developed 
several methods of representing this field pictorially. Unfortunately the pictures we get from 
these methods are so complicated that it is hard to see anything from them. One of our 
methods was to plot the spin vectors on a regular grid in space, but the resulting picture was 
completely illegible due to its complexity. Another attempt was to plot the field lines across 
space. Using known cylindrical symmetry of the field (20) to eliminate unnecessary lines 
we were able to produce images like figure 1 showing field lines passing around the origin 
of  the coordinate system. However, this approach failed to produce meaningful images for 
more complicated cases, and thus we decided to use the energy density of (8) to visualize 
the evolution (figures 2). Figures 3 and 4 present plots of the energy density of the Hopf 
configuration in thex-z plane calculated for &h and w3 respectively. As we can see they are 
in good agreement, and there is a toroidali structure parting from the starting configuration 
and moving with approximately constant velocity$. 

Apparent agreement between the first and second steps of the calculation, depicted in 
figure 3 and figure 4 entitles us to use a large-time extrapolation as an aid to guessing the 
form of the evolution of the configuration. Figures 5 and 6 show how the field energy 
density may appear for t = 200. As we can see, the first and the second steps of the 
computation no longer agree but the disagreement is not complete. In the linear (in time) 

t Energy density has cylindrical symmetry. 
$ W e  can make similar plots for different times and measure this velocity. 
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Figure 1. Field lines of the Hopf configuration of the spin field. 

approximation we get two disjoint structures travelling with constant speed in opposite 
directions. In the nonlinear (in time) approximation this structure is spread on the surface 
of the growing sphere. 

We feel that, while not being a proof or even a strong argument, this, together with 
the proof from. [8], entitles us to state the hypothesis that the Hopf configuration (20) will 
expand to infinfty in the limit of infinite time; 

The somewhat similar problem of the, Hopf configuration with the electromagnetic field 
has been studied in [ 1 I]. General properties of the solution presented there are similar to 
properties of our calculations. Both consist of structures with high energy density which 
spread in space. 

All computations were performed on the Hewlett Packard Apollo 9000/710 workstation 
using Mathematica 2.1. 

5. Conclusion 

We have shown, as an alternative to numerical methods, an approach to the analysis of the 
evolution of particular configurations with non-trivial topological properties. This method 
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Figure 2. Energy density of the Hopf wnfiguntion for I = 0. 

Figure 3. Energy density of lhe Hopf wnfiguntion for I = 0.1 for the firs1 calculation step. 
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Figure 4. Energy density of the Hopf configuration for t = 0.1 for the second calculation step. 

Figure 5. Energy density of the Hopf configurahon fort = 200 for the fitst calculation step. 
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Figure 6. Energy density of the Hopf configguntion for f = 200 for the second calculation step. 

may be used for other, first-order in time, evolution equations. Results may be used, for 
instance, as a guide in the search for solutions or proper base states in the coherent states 
method. 
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Appendix 

In this appendix we will use the method presented above to solve the well known cases of 
the Schrodinger equation and the nonlinear Schrodinger equation. 

Let us consider the linear Schriidinger equation in the form 

(AI) 
a i-@ = (-v' + v)@ 
at 

with an initial condition for the time t = 0 of 

$(a 2) = ccn@n(s)  
n 
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is a complete set of eigenfunctions of (Al). The equation equivalent to (17) for (AI) takes 
the form 

L44) W. x) = XU- iEEn)cn@n(o) 
n 

and for the Nth iteration step 

which is an exact solution of (Al) for any value o f t  and any initial condition (AZ). 
As a second example we will analyse a nonlinear Schrodinger equation 

at = i (029 + rul+lz@) (A@ 

with an initial condition 

@(O, o) = Aeik.= . (A7) 

The first iteration gives us 

@ ( E ,  I) = A (1 + ic(lA1'or - k')) eik" (AS) 

and the second iteration gives 

$(2s, x) = (1 - im + is3alA1'wZ)(1 - isw)e'"'" (-49) 

where 

(A 10) 
2 2  w=cYIAI  - k  . 

For small E ,  (A9) approaches 

@(26,o) = A(l - ico)Zeik'" (All)  

and thus 

+(t, 2) = lim + ( N E ,  o) = ei(k.r-u') (A 12) s=rIN:N-m 

which is the exact solution of (A6) with the initial condition (A7). 

References 

[ I ]  Potter D 1973 Compuratimal Physics (New York: Willey) 
[21 Dahlquist G and BjBrck Ake1974 Numerical Methods (Englewood Cliffs, NI: Prenrice-Hall) 
[3] Enz U 1977 3. Math. Phys. 18 347-53 
[4] Shank- R 1977 3. Physique 38 1405 
[SI Dzialoshinski I E and lvmov B A 1979 JETP Pisma 29 592 
[6] Kosevitch A M. lvanov B A and Kovalev A S 1983 Nonlinear Mngnetirntion Wnve.~. Dynnmicol and 

[7] FlandeN H 1963 Dr@renfiol Forms with AppCcoriUns tv thc PIc,wicai Sciences (New York Academic) $5.3 
181 Jochym P T and Sokalski K 1993 f. Phys. A: Math. Gen. 26 383744 
[9] Wilczek F and Zee A 1983 Phyr. Rev. Len. s1 2250 

[IO] M h m a n a n  M and Nakamun K 1984 Phys. Rev. Lett. 53 2497 
[I l l  R3iada A F 1990 J. Phys. A: Math. Gen. 23 L815-20 

Topological Solitons (Kiev: Naukova Dumka) 


